Faster and cheaper DNA sequencing techniques will likely improve care for patients with breast cancer but also create challenges for clinicians as they counsel patients on their treatment options, according to a new review of next-generation DNA sequencing. Its findings provide insights into how genetic advances will soon be affecting patient care.

When breast cancer is diagnosed in a woman, it is important to know as much about her tumor as possible to determine the best treatment. Most cases of breast cancer are sporadic, but a small number of cases is hereditary and caused by one or more mutations in genes such as BRCA1 or BRCA2. To find such genetic mutations in newly diagnosed patients, researchers must sequence the woman’s DNA, which is generally a relatively slow process that generates results weeks or months after patients have started treatment.

Next-generation sequencing (NGS) is a newer method of sequencing DNA that processes large amounts of data. It is faster and more expensive than conventional sequencing, but in recent years it has become cheaper and more widely accessible by rapid advances in computing power. With the use of NGS, which will soon become the mainstay of clinical genetics, breast cancer units will likely be able to get the results of genetic testing before patients begin their breast cancer treatment.


Continue Reading

In a collaboration between breast surgeons and medical geneticists at the Norfolk & Norwich University Hospital and Addenbrooke’s Hospital in Cambridge, United Kingdom, Simon Pilgrim, MD, and his colleagues searched the medical literature to identify relevant studies relating to breast cancer genetics and then looked to see what impact NGS will have on breast cancer units as well as what opportunities will arise for improving treatment for patients. Their review was published in the British Journal of Surgery (2014; doi:10.1002/bjs.9458).

The researchers found that because NGS will allow breast cancer clinicians to know whether patients carry high-risk mutations (which might increase their risk of developing another breast cancer in the same or other breast in the future) before the start of treatment, more women might opt for mastectomy instead of breast-conserving surgery or for double rather than single mastectomy.

Pilgrim noted that some of the mutations that are detected might also confer increased risks of developing other cancers, which would indicate the need to monitor at-risk patients closely for these cancers as well.

“The converse is also true,” he said. “NGS can be used to find genetic mutations in people with other hereditary cancers or conditions. For example, a woman with ovarian cancer might be found to have a BRCA1 mutation, and hence breast units must be prepared to handle questions about the management of breast cancer risk in patients referred by other specialties.”

Pilgrim added that NGS will have implications for the relatives of people found to have mutations linked to breast or other cancers, and therefore family members may also wish to undergo testing after appropriate counseling.