Failure to detect HCC

1. To overcome the above mentioned US limitations, CT- or MRI-based surveillance has been proposed.84,85 MRI proved the best method of surveillance for early HCC (sensitivity of 83.7%)85 but high costs, long scan times and low availability prevent the widespread use of MRI as an imaging technique for screening. An abbreviated MRI protocol (AMRI) which comprises two sequences performed approximately 20 mins after the intravenous injection of gadoxetate disodium86,87 can be performed at a lower cost in a shorter time than a complete examination, thus making it more suitable for routine HCC surveillance. In retrospective studies,86,88 AMRI has proven superior to US in diagnostic per-patient and per-lesion performance. Another AMRI protocol utilizing only T1-weighted pre contrast and dynamic post contrast images using an extracellular gadolinium contrast agent has recently been proposed.89 In this retrospective study conducted on 164 consecutive screenings, this AMRI protocol afforded examination time (7–10 mins) even shorter than an accurate US examination and showed a strong agreement with conventional MRI in categorizing newly detected lesions according to liver imaging reporting data system (LI-RADS). In addition, it is likely that AMRI would prove especially useful in the NAFLD populations where the diagnostic accuracy of US is greatly reduced.

In a recent mathematical model, bi annual contrast-enhanced AMRI showed a higher sensitivity than US and proved affordable when applied to high-risk patients, resulting in improvement of early tumor detection in a cost-effective manner.90 If these data are confirmed in controlled trials, AMRI could become a cost-effective alternative to conventional MRI for screening in cirrhosis even though scarce availability and costs of MRI remain problems to be solved.


Continue Reading

2. AFP performance can be improved by monitoring longitudinal patterns of AFP over time: if the rate of increase of AFP and the degree of fluctuation of all AFP-values recorded within each patient are used rather than the last value of AFP, the accuracy of the test in detecting HCC among patients with hepatitis C and either advanced fibrosis or cirrhosis may increase.91,92 Several other tumor markers have been reported as good complements to AFP and have been used in clinical diagnosis, including lens culinaris agglutinin reactive AFP (AFP-L3%), des-γ-carboxy prothrombin (DCP), fucosylated biomarkers (such as Golgi protein 73 and AFP), osteopontin, glypican-3, and micro-RNAs.93–101 Albeit these biomarkers have been evaluated as potential tools for HCC screening in some studies,94,100,101so far they have not met the clinical requirements for HCC surveillance. Prospective studies are needed to externally validate their accuracy for early detection of HCC.102

FUTURE DIRECTIONS

In the era of precision medicine and limited resources, screening programs have to accomplish the difficult task of personalized surveillance according to the risk of disease since HCC risk is not uniform across all patients with the same clinical conditions such as cirrhosis owing to different etiologies.

Risk scores providing a numerical cut off for the 5- and 10-year risk of developing HCC have been proposed. These scores have been developed for hepatitis B and for hepatitis C separately, as well as for cirrhosis (of any etiology). Several risk scores have been developed for hepatitis B.40,103–105Among them the Risk Estimation for Hepatocellular Carcinoma in chronic hepatitis B (REACH-B)40 and the Platelets, Age, Gender in chronic hepatitis B (PAGE-B)105 and their recent modifications106,107 are the most popular. The first has been developed and validated in Asian patients without cirrhosis using clinical parameters such as sex, age, serum alanine aminotransferase (ALT) concentration, HBeAg status plus HBV-DNA status.40 Accordingly, atminimum score values (0–6), the 10-year risk of having HCC is negligible (<1%), while at the value of 16 the 3-, 5-, 10-yeas risk is 15%, 32%, 64%, respectively. Recently, HBV-DNA status has been replaced by liver stiffness (as a measure of liver fibrosis) based on the assumption that HBV clearance can easily be achieved in the era of effective antiviral therapy, therefore leading to overestimation of the incidence of HCC.106

PAGE-B score was first developed in Caucasian patients with chronic hepatitis without HCC and treated with first-line oral antivirals for ≥12 months. Based on simple clinical variables (age, gender, and platelets), this score proved useful in the assessment of the 5-year risk of HCC: a high PAGE-B score (≥18) should prompt continuous and careful surveillance in that the 5-year cumulative risk of HCC is 17% in this subgroup of patients. Recently, a modified PAGE-B score by adding serum albumin levels has been validated in Asian populations.107

A risk score for HCV patients has been developed using the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) cohort.41This model includes age, alkaline phosphatase (ALP), black race, albumin, gastroesophageal varices and platelets. The calculation is complex, and the score has not been validated so far. For these reasons, its use is not recommended.

To further refine HCC prediction, the combination of serum concentrations of three biomarkers (AFP, AFP-L3% and DCP), with patient sex and age has been proposed as a diagnostic model (GALAD),108and preliminary clinical results seem to support a widespread use in clinical practice.109 Improvement of the GALAD score has recently been reported by adding US results (presence of a solid lesion on surveillance).110 Another risk score, the Doylestown algorithm, incorporates biomarkers (AFP and fucosylated biomarkers) and relevant clinical variables (age, gender and ALT) with ALP.111 Although promising, these clinical scores have not yet been widely approved for HCC screening.

To supplement these imperfect clinical scores, new molecular biomarkers have been explored.112,113Several germline single-nucleotide polymorphisms in epidermal growth factor and myeloperoxidase genes have been associated with elevated HCC risk.114,115 Similarly, a prognostic 186-gene signature has been identified and validated as an HCC risk predictor in patients with chronic liver disease with different etiologies.116,117

Once again, all these molecular biomarkers are far from being in widespread use in clinical practice.

In summary, although there is evidence of the benefits of HCC surveillance in terms of improved specific cancer mortality, improving modality of, and tools for, screening is necessary in order to cope with future scenarios where the etiology of cirrhosis is changing and the population at risk is becoming larger.

Disclosure

The authors certify that they have no affiliations with, or involvement in, any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.


Giampiero Francica,1 Mauro Borzio2

1Unità Operativa Ecografia ed Ecointerventistica, Pineta Grande Hospital, Castel Volturno, Italy; 2Unità Operativa Complessa Gastroenterologia ed Endoscopia Digestiva, Azienda Socio Sanitaria TerritorialeMelegnano e della Martesana, Milano, Italy


References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262

2. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–171. doi:10.1016/j.jhep.2018.09.014

3. Bertuccio P, Turati F, Carioli G, et al. Global trends and predictions in hepatocellular carcinoma mortality. J Hepatol. 2017;67(2):302–309. doi:10.1016/j.jhep.2017.03.011

4. Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19(3):329–338. doi:10.1055/s-2007-1007122

5. Taouli B, Goh JS, Lu Y, et al. Growth rate of hepatocellular carcinoma: evaluation with serial computed tomography or magnetic resonance imaging. J Comput Assist Tomogr. 2005;29(4):425–429.

6. Barbara L, Benzi G, Gaiani S, et al. Natural history of small untreated hepatocellular carcinoma in cirrhosis: a multivariate analysis of prognostic factors of tumor growth rate and patient survival. Hepatology. 1992;16(1):132–137.

7. Sheu JC, Sung JL, Chen DS, et al. Growth rate of asymptomatic hepatocellular carcinoma and its clinical implications. Gastroenterology. 1985;89(2):259–266.

8. An C, Choi YA, Choi D, et al. Growth rate of early-stage hepatocellular carcinoma in patients with chronic liver disease. Clin Mol Hepatol. 2015;21(3):279–286. doi:10.3350/cmh.2015.21.3.279

9. European Association for the Study of the Liver.European Association for the Study of the Liver.EASL Clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236. doi:10.1016/j.jhep.2018.03.019

10. Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68(2):723–750. doi:10.1002/hep.29913

11. Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int. 2017;11(4):317–370. doi:10.1007/s12072-017-9799-9

12. American Cancer Society. Can Liver Cancer Be Found Early? Vol. 2018. Atlanta, GA: American Cancer Society; 2016.

13. National Cancer Institute. Liver (hepatocellular) cancer screening—health professional version. Available from: https://www.cancer.gov/types/liver/hp/liver-screening. Accessed January 9, 2018.

14. Mourad A, Deuffic-Burban S, Ganne-Carrié N, et al. Hepatocellular carcinoma screening in patients with compensated hepatitis C virus (HCV)-related cirrhosis aware of their HCV status improves survival: a modeling approach. Hepatology. 2014;59(4):1471–1481. doi:10.1002/hep.26944

15. Davila JA, Morgan RO, Richardson PA, Du XL, McGlynn KA, El-Serag HB. Use of surveillance for hepatocellular carcinoma among patients with cirrhosis in the United States. Hepatology. 2010;52(1):132–141. doi:10.1002/hep.23615

16. Davila JA, Henderson L, Kramer JR, et al. Utilization of surveillance for hepatocellular carcinoma among hepatitis C virus-infected veterans in the United States. Ann Intern Med. 2011;154(2):85–93.

17. Schutte K, Bornschein J, Kahl S, et al. Delayed diagnosis of HCC with chronic alcoholic liver disease. Liver Cancer. 2012;1(3–4):257–266. doi:10.1159/000343840

18. Edenvik P, Davidsdottir L, Oksanen A, Isaksson B, Hultcrantz R, Stal P. Application of hepatocellular carcinoma surveillance in a European setting. What can we learn from clinical practice? Liver Int. 2015;35(7):1862–1871. doi:10.1111/liv.12764

19. Zhao C, Jin M, Le RH, et al. Poor adherence to hepatocellular carcinoma surveillance: a systematic review and meta-analysis of a complex issue. Liver Int. 2018;38(3):503–514. doi:10.1111/liv.13555

20. Kang JY, Lee TP, Yap I, Lun KC. Analysis of cost-effectiveness of different strategies for hepatocellular carcinoma screening in hepatitis B virus carriers. J Gastroenterol Hepatol. 1992;7(5):463–482.

21. Arguedas MR, Chen VK, Eloubeidi MA, Fallon MB. Screening for hepatocellular carcinoma in patients with hepatitis C cirrhosis: a cost-utility analysis. Am J Gastroenterol. 2003;98(3):679–690.

22. Lin OS, Keeffe EB, Sanders GD, Owens DK. Cost-effectiveness of screening for hepatocellular carcinoma in patients with cirrhosis due to chronic hepatitis C. Aliment Pharmacol Ther. 2004;19(11):1159–1726. doi:10.1111/j.1365-2036.2004.01963.x

23. Andersson KL, Salomon JA, Goldie SJ, Chung RT. Cost effectiveness of alternative surveillance strategies for hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol. 2008;6(12):1418–1424. doi:10.1016/j.cgh.2008.08.005

24. Sarasin FP, Giostra E, Hadengue A. Cost-effectiveness of screening for detection of small hepatocellular carcinoma in western patients with child-pugh class A cirrhosis. Am J Med. 1996;101(4):422–434. doi:10.1016/S0002-9343(96)00197-0

25. Patel D, Terrault NA, Yao FY, Bass NM, Ladabaum U. Cost-effectiveness of hepatocellular carcinoma surveillance in patients with hepatitis C virus-related cirrhosis. Clin Gastroenterol Hepatol. 2005;3(1):75–84.

26. Nouso K, Tanaka H, Uematsu S, et al. Cost-effectiveness of the surveillance program of hepatocellular carcinoma depends on the medical circumstances. J Gastroenterol Hepatol. 2008;23(3):437–444. doi:10.1111/j.1440-1746.2007.05054.x

27. Cucchetti A, Trevisani F, Cescon M, et al. Cost-effectiveness of semi-annual surveillance for hepatocellular carcinoma in cirrhotic patients of the Italian liver cancer population. J Hepatol. 2012;56(5):1089–1096. doi:10.1016/j.jhep.2011.11.022

28. Thompson Coon J, Rogers G, Hewson P, et al. Surveillance of cirrhosis for hepatocellular carcinoma: a cost-utility analysis. Br J Cancer. 2008;98(7):1166–1175. doi:10.1038/sj.bjc.6604301

29. Cadier B, Bulsei J, Nahon P; for ANRS CO12 CirVir and CHANGH groups, et al. Early detection and curative treatment of hepatocellular carcinoma: a cost-effectiveness analysis in France and in the United States. Hepatology. 2017;65(4):1237–1248. doi:10.1002/hep.28961.

30. Nowak A, Giger RS, Krayenbuehl PA. Higher age at diagnosis of hemochromatosis is the strongest predictor of the occurrence of hepatocellular carcinoma in the Swiss hemochromatosis cohort: a prospective longitudinal observational study. Medicine (Baltimore). 2018;97(42):e12886. doi:10.1097/MD.0000000000012886

31. Cavazza A, Caballería L, Floreani A, et al. Incidence, risk factors, and survival of hepatocellular carcinoma in primary biliary cirrhosis: comparative analysis from two centers. Hepatology. 2009;50(4):1162–1168. doi:10.1002/hep.23095

32. Ganne-Carrié N, Chaffaut C, Bourcier V; for CIRRAL Group, et al. Estimate of hepatocellular carcinoma incidence in patients with alcoholic cirrhosis. J Hepatol. 2018;69(6):1274–1283. doi:10.1016/j.jhep.2018.07.022.

33. D’Amico G, Bataller R. Need for surveillance of hepatocellular carcinoma in patients with alcoholic cirrhosis. J Hepatol. 2018;69(6):1219–1220. doi:10.1016/j.jhep.2018.09.027

34. Kanwal F, Kramer JR, Mapakshi S, et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology. 2018;155(6):1828–1837. doi:10.1053/j.gastro.2018.08.024

35. Kolly P, Dufour JF. Surveillance for hepatocellular carcinoma in patients with NASH. Diagnostics. 2016;6(2):E22. doi:10.3390/diagnostics6020022

36. Sherman M. Surveillance for hepatocellular carcinoma. Best Pract Res Clin Gastroenterol. 2014;28(5):783–793. doi:10.1016/j.bpg.2014.08.008

37. Wong VW-S, Janssen HLA. Can we use HCC risk scores to individualize surveillance in chronic hepatitis B infection? J Hepatol. 2015;63(3):722–732. doi:10.1016/j.jhep.2015.05.019

38. Diaz-Gonzalez A, Forner A. Surveillance for hepatocellular carcinoma. Best Pract Res Clin Gastroenterol.2016;30(6):1001–1010. doi:10.1016/j.bpg.2016.04.007

39. Chen CJ, Yang HI, Iloeje UH. Hepatitis B virus DNA levels and outcomes in chronic hepatitis B. Hepatology. 2009;49(5 suppl):S72–S84. doi:10.1002/hep.22884

40. Yang HI, Yuen MF, Chan HL, et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH B): development and validation of a predictive score. Lancet Oncol. 2011;12(6):568–574. doi:10.1016/S1470-2045(11)70150-4

41. Lok AS, Seeff LB, Morgan TR, et al. Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology. 2009;136(1):138–148. doi:10.1053/j.gastro.2008.09.014

42. Masuzaki R, Tateishi R, Yoshida H, et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology. 2009;49(6):1954–1961. doi:10.1002/hep.22870

43. Kim MN, Kim SU, Kim BK, et al. Increased risk of hepatocellular carcinoma in chronic hepatitis B patients with transient elastography-defined subclinical cirrhosis. Hepatology. 2015;61(6):1851–1859. doi:10.1002/hep.27735

44. Singal AG, Conjeevaram HS, Volk ML, et al. Effectiveness of hepatocellular carcinoma surveillance in patients with cirrhosis. Cancer Epidemiol Biomarkers Prev. 2012;21(5):793–799. doi:10.1158/1055-9965.EPI-11-1005

45. Del Poggio P, Olmi S, Ciccarese F, et al. Factors that affect efficacy of ultrasound surveillance for early stage hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12(11):1927–1933. doi:10.1016/j.cgh.2014.02.025

46. Tzartzeva K, Obi J, Rich NE, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology. 2018;154(6):1706–1718. doi:10.1053/j.gastro.2018.01.064

47. Cucchetti A, Trevisani F, Pecorelli A, et al. Estimation of lead-time bias and its impact on the outcome of surveillance for the early diagnosis of hepatocellular carcinoma. J Hepatol. 2014;61(2):333–341. doi:10.1016/j.jhep.2014.03.037

48. Serper M, Taddei TH, Mehta R, et al. Association of provider specialty and multidisciplinary care with hepatocellular carcinoma treatment and mortality. Gastroenterology. 2017;152(8):1954–1964. doi:10.1053/j.gastro.2017.02.040

49. Borzio M, Dionigi E, Rossini A, et al. Trend of improving prognosis of hepatocellular carcinoma in clinical practice. An Italian In-Field Experience Dig Dis Sci. 2015;60(5):1465–1473. doi:10.1007/s10620-014-3427-5

50. Trevisani F, Santi V, Gramenzi A, et al. Surveillance for early diagnosis of hepatocellular carcinoma: is it effective in intermediate/advanced cirrhosis? Am J Gastroenterol. 2007;102(11):2448–2457. doi:10.1111/j.1572-0241.2007.01395.x

51. Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2018. [Epub ahead of print]. doi:10.1002/ijc.31937

52. Moon AM, Weiss NS, Beste LA, et al. No association between screening for hepatocellular carcinoma and reduced cancer-related mortality in patients with cirrhosis. Gastroenterology. 2018;155(4):1128–1139. doi:10.1053/j.gastro.2018.06.079

53. Kelley MJ. Surveillance for hepatocellular carcinoma. Ann Intern Med. 2011;155(4):274. author reply 275. doi:10.7326/0003-4819-155-4-201108160-00016

54. Lederle FA, Pocha C. Screening for liver cancer: the rush to judgment. Ann Intern Med. 2012;156(5):387–389. doi:10.7326/0003-4819-156-3-201202070-00006

55. Atiq O, Tiro J, Yopp AC, et al. An assessment of benefits and harms of hepatocellular carcinoma surveillance in patients with cirrhosis. Hepatology. 2017;65(4):1196–1205. doi:10.1002/hep.28895

56. Konerman MA, Verma A, Zhao B, Singal AG, Lok AS, Parikh ND. Frequency and outcomes of abnormal imaging in patients with cirrhosis enrolled in a hepatocellular Carcinoma surveillance program. Liver Transpl. 2019;25(3):369–379. doi:10.1002/lt.25398

57. Costentin CE, Layese R, Bourcier V, et al. Compliance with hepatocellular carcinoma surveillance guidelines associated with increased lead-time adjusted survival of patients with compensated viral cirrhosis: a multi-center cohort study. Gastroenterology. 2018;155(2):431–442. doi:10.1053/j.gastro.2018.04.027

58. Stravitz RT, Heuman DM, Chand N, et al. Surveillance for hepatocellular carcinoma in patients with cirrhosis improves outcome. Am J Med. 2008;121(12):119–126. doi:10.1016/j.amjmed.2007.09.020

59. Singal AG, Yopp A, Gupta S, et al. Failure rates in the hepatocellular carcinoma surveillance process. Cancer Prev Res. 2012;5(9):1124–1130. doi:10.1158/1940-6207.CAPR-12-0046

60. Walker M, El-Serag HB, Sada Y, et al. Cirrhosis is under-recognised in patients subsequently diagnosed with hepatocellular cancer. Aliment Pharmacol Ther. 2016;43(5):621–630. doi:10.1111/apt.13505

61. Kramer JR, Davila JA, Miller ED, Richardson P, Giordano TP, El-Serag HB. The validity of viral hepatitis and chronic liver disease diagnoses in veterans affairs administrative databases. Aliment Pharmacol Ther. 2008;27(3):274–282. doi:10.1111/j.1365-2036.2007.03572.x

62. Lin ZH, Xin YN, Dong QJ, et al. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. Hepatology. 2011;53(3):726–736. doi:10.1002/hep.24105

63. Nehra M, Ma Y, Clark CB, Amarasingham R, Rockey DC, Singal AG. Use of administrative claims data for identifying patients with cirrhosis. J Clin Gastroenterol. 2013;47(5):e50–e54. doi:10.1097/MCG.0b013e3182688d2f

64. Smith BD, Morgan RL, Beckett GA, Falck-Ytter Y, Holtzman D, Ward JW. Hepatitis C virus testing of persons born during 1945–1965: recommendations from the Centers for Disease Control and Prevention. Ann Intern Med. 2012;157(11):817–822. doi:10.7326/0003-4819-157-9-201211060-00529

65. Moyer VA. U.S. preventive services task force. Screening for hepatitis C virus infection in adults: U.S. preventive services task force recommendation statement. Ann Intern Med. 2013;159(5):349–357. doi:10.7326/0003-4819-159-5-201309030-00672

66. Deuffic-Burban S, Huneau A, Verleene A, et al. Assessing the cost-effectiveness of hepatitis C screening strategies in France. J Hepatol. 2018;69(4):785–792. doi:10.1016/j.jhep.2018.05.027

67. Rein DB, Wittenborn JS, Dougherty MC. The cost-effectiveness of a one-time hepatitis C virus antibody test followed by treatment for all Americans ages 18 and older as compared to current testing recommendations in the United States. J Hepatol. 2017;66:S405. doi:10.1016/S0168-8278(17)31168-6

68. Barocas JA, Tasillo A, Eftekhari Yazdi G, et al. Population level outcomes and cost-effectiveness of expanding the recommendation for age-based hepatitis C testing in the United States. Clin Infect Dis. 2018;67(4):549–556. doi:10.1093/cid/ciy098

69. Leung C, Yeoh SW, Patrick D, et al. Characteristics of hepatocellular carcinoma in cirrhotic and non-cirrhotic non-alcoholic fatty liver disease. World J Gastroenterol. 2015;21(4):1189–1196. doi:10.3748/wjg.v21.i10.2937

70. Giannini EG, Marabotto E, Savarino V, Italian Liver Cancer (ITALICA) Group, et al.. Hepatocellular carcinoma in patients with cryptogenic cirrhosis. Clin Gastroenterol Hepatol. 2009;7(5):580–585.

71. Piscaglia F, Svegliati-Baroni G, Barchetti A; HCC-NAFLD Italian Study Group, et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: a multicenter prospective study. Hepatology. 2016;63(3):827–838. doi:10.1002/hep.28368.

72. Dalton-Fitzgerald E, Tiro J, Kandunoori P, Halm EA, Yopp A, Singal AG. Practice patterns and attitudes of primary care providers and barriers to surveillance of hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol. 2015;13(4):791–798. doi:10.1016/j.cgh.2014.06.031

73. Singal AG, Li X, Tiro J, et al. Racial, social, and clinical determinants of hepatocellular carcinoma surveillance. Am J Med. 2015;128(1):90.e1–90.e7. doi:10.1016/j.amjmed.2014.07.027

74. Beste LA, Ioannou GN, Yang Y, Chang MF, Ross D, Dominitz JA. Improved surveillance for hepatocellular carcinoma with a primary care-oriented clinical reminder. Clin Gastroenterol Hepatol. 2015;13(1):172–179. doi:10.1016/j.cgh.2014.04.033

75. Del Poggio P, Olmi S, Ciccarese F, et al. A training program for primary care physicians improves the effectiveness of ultrasound surveillance of hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2015;27(9):1103–1108. doi:10.1097/MEG.0000000000000404

76. Farvardin S, Patel J, Khambaty M, et al. Patient-reported barriers are associated with lower hepatocellular carcinoma surveillance rates in patients with cirrhosis. Hepatology. 2017;65(3):875–884. doi:10.1002/hep.28770

77. Zhao C, Nguyen MH. Hepatocellular carcinoma screening and surveillance: practice guidelines and real-life practice. J Clin Gastroenterol. 2016;50(2):120–133. doi:10.1097/MCG.0000000000000446

78. Wong CR, Garcia RT, Trinh HN, et al. Adherence to screening for hepatocellular carcinoma among patients with cirrhosis or chronic hepatitis B in a community setting. Dig Dis Sci. 2009;54(12):2712–2721. doi:10.1007/s10620-009-1015-x

79. Sarkar M, Shvachko VA, Ready JB, et al. Characteristics and management of patients with chronic hepatitis B in an integrated care setting. Dig Dis Sci. 2014;59(9):2100–2108. doi:10.1007/s10620-014-3142-2

80. Ly CL, Wong LL. Ethnicity as a predictive factor for hepatocellular carcinoma screening among patients in Hawaii. Ethn Dis. 2014;24(3):376–381.

81. Palmer LB, Kappelman MD, Sandler RS, Hayashi PH. Surveillance for hepatocellular carcinoma in a Medicaid cirrhotic population. J Clin Gastroenterol. 2013;47(8):713–718. doi:10.1097/MCG.0b013e318286fd97

82. Tran SA, Le A, Zhao C, et al. Rate of hepatocellular carcinoma surveillance remains low for a large, real-life cohort of patients with hepatitis C cirrhosis. BMJ Open Gastroenterol. 2018;5(1):e000192. doi:10.1136/bmjgast-2017-000192

83. Singal AG, Tiro JA, Murphy CC, et al. Mailed outreach invitations significantly improve hcc surveillance rates in patients with cirrhosis: a randomized clinical trial. Hepatology. 2019;69(1):121–130. doi:10.1002/hep.30129

84. Pocha C, Dieperink E, McMaken KA, Knott A, Thuras P, Ho SB. Surveillance for hepatocellular cancer with ultrasonography vs computed tomography—a randomised study. Aliment Pharmacol Ther. 2013;38(3):303–312. doi:10.1111/apt.2013.38.issue-3

85. Kim SY, An J, Lim YS, et al. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of hepatocellular carcinoma. JAMA Oncol. 2017;3(4):456–463. doi:10.1001/jamaoncol.2016.3147

86. Marks RM, Ryan A, Heba ER, et al. Diagnostic per-patient accuracy of an abbreviated hepatobiliary phase gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance. AJR Am J Roentgenol. 2015;204(3):527–535. doi:10.2214/AJR.14.12986

87. Besa C, Lewis S, Pandharipande PV, et al. Hepatocellular carcinoma detection: diagnostic performance of a simulated abbreviated MRI protocol combining diffusion- weighted and T1-weighted imaging at the delayed phase post gadoxetic acid.Abdom Radiol. 2017;42(1):179–190. doi:10.1007/s00261-017-1139-y

88. Tillman BG, Gorman JD, Hru JM, et al. Diagnostic per-lesion performance of a simulated gadoxetate disodium-enhanced abbreviated MRI protocol for hepatocellular carcinoma screening. Clin Radiol. 2018;73(5):485–493. doi:10.1016/j.crad.2017.11.013

89. Lee JY, Huo EJ, Weinstein S, et al. Evaluation of an abbreviated screening MRI protocol for patients at risk for hepatocellular carcinoma. Abdom Radiol. 2018;43(7):1627–1633. doi:10.1007/s00261-017-1339-5

90. Goossens N, Singal AG, King LY, et al. Cost-effectiveness of risk score-stratified hepatocellular carcinoma screening in patients with cirrhosis. Clin Transl Gastroenterol. 2017;8(6):e101. doi:10.1038/ctg.2017.26

91. Lee E, Edward S, Singal AG, Lavieri MS, Volk M. Improving screening for hepatocellular carcinoma by incorporating data on levels of alpha-fetoprotein, over time. Clin Gastroenterol Hepatol. 2013;11(4):437–440. doi:10.1016/j.cgh.2012.11.029

92. Tayob N, Lok AS, Do KA, Feng Z. Improved detection of hepatocellular carcinoma by using a longitudinal alpha-fetoprotein screening algorithm. Clin Gastroenterol Hepatol. 2016;14(3):469–475. doi:10.1016/j.cgh.2015.07.049

93. Lok AS, Sterling RK, Everhart JE, et al. Des-gamma-carboxy prothrombin and alphafetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology. 2010;138(2)::493–502. doi:10.1053/j.gastro.2009.08.053

94. Marrero JA, Feng Z, Wang Y, et al. Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma. Gastroenterology. 2009;137(1):110–118. doi:10.1053/j.gastro.2009.04.005

95. Aoyagi Y, Isemura M, Suzuki Y, et al. Fucosylated alpha-fetoprotein as marker of early hepatocellular carcinoma. Lancet. 1985;2(8468):1353–1354. doi:10.1016/S0140-6736(85)92643-1

96. Wang M, Sanda M, Comunale MA, et al. Changes in the glycosylation of kininogen and the development of a Kininogen-based algorithm for the early detection of HCC. Cancer Epidemiol Biomarkers Prev. 2017;26(5):795–803. doi:10.1158/1055-9965.EPI-16-0974

97. Mao Y, Yang H, Xu H, et al. Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut. 2010;59(12):1687–1693. doi:10.1136/gut.2010.214916

98. Shang S, Plymoth A, Ge S, et al. Identification of osteopontin as a novel marker for early hepatocellular carcinoma. Hepatology. 2012;55(2):483–490. doi:10.1002/hep.24703

99. Lin X-J, Chong Y, Guo Z-W, et al. A serum microRNA classifier for early detection of hepatocellular carcinoma: a multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study. Lancet Oncol. 2015;16(7):804–815. doi:10.1016/S1470-2045(15)00048-0

100. Li B, Li B, Guo T, et al. Artificial neural network models for early diagnosis of hepatocellular carcinoma using serum levels of α-fetoprotein, α-fetoprotein-L3, des-γ-carboxy prothrombin, and Golgi protein 73. Oncotarget. 2017;8(46):80521–80530. doi:10.18632/oncotarget.19298

101. Choi J, Kim GA, Han S, Lee W, Chun S, Lim YS. Longitudinal assessment of three serum biomarkers to detect very early stage hepatocellular carcinoma. Hepatology. 2019;69(5):1983–1994. doi:10.1002/hep.30233

102. Yang JD, Patel T. Early detection of hepatocellular carcinoma: expanding the utility of circulating tumor markers. Hepatology. 2019;69(5):1855–1857. doi:10.1002/hep.30468

103. Yuen MF, Tanaka D, Fong YT, et al. Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B. J Hepatology. 2009;50(1):80–88. doi:10.1016/j.jhep.2008.07.023

104. Wong VW, Chan SL, Mo F, et al. Clinical scoring system to predict hepatocellular carcinoma in chronic hepatitis B carriers. J Clin Oncol. 2010;28(10):1660–1665. doi:10.1200/JCO.2009.26.2675

105. Papatheorodidis G, Dalekos G, Sypsa V, et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasian with chronic hepatitis B on 5-year antiviral therapy. J Hepatol. 2016;64(4):800–806. doi:10.1016/j.jhep.2015.11.035

106. Lee HW, Yoo EJ, Kim BK, et al. Prediction of development of liver-related events by transient elastography in hepatitis B patients with complete virological response on antiviral therapy. Am J Gastroenterol. 2014;109:1241–2499. doi:10.1038/ajg.2014.157

107. Kim JH, Kim YD, Lee M, et al. Modified PAGE-B score predicts the risk of hepatocellular carcinoma in Asians with chronic hepatitis B on antiviral therapy. J Hepatol. 2018;69(5):1066–1073. doi:10.1016/j.jhep.2018.07.018

108. Johnson PJ, Pirrie SJ, Cox TF, et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol Biomarkers Prev. 2014;23(1):144–153. doi:10.1158/1055-9965.EPI-13-0870

109. Best J, Bilgi H, Heider D, et al. The GALAD scoring algorithm based on AFP, AFP-L3, and DCP significantly improves detection of BCLC early stage hepatocellular carcinoma. Z Gastroenterol. 2016;54(12):1296–1305. doi:10.1055/s-0042-119529

110. Yang JD, Addissie BD, Mara KC, et al. GALAD score for hepatocellular carcinoma detection in comparison to liver ultrasound and proposal of GALADUS score. Cancer Epidemiol Biomarkers Prev. 2018:cebp.0281.2018. [Epub ahead of print]. doi:10.1158/1055-9965.EPI-18-0281

111. Wang M, Devarajan K, Singal AG, et al. The Doylestown algorithm: a test to improve the performance of AFP in the detection of hepatocellular carcinoma. Cancer Prev Res (Phila). 2016;9(2):172–179. doi:10.1158/1940-6207.CAPR-15-0186

112. Goossens N, Sun X, Hoshida Y. Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepat Oncol. 2015;2(4):371–379. doi:10.2217/hep.15.26

113. Goossens N, Bian CB, Hoshida Y. Tailored algorithms for hepatocellular carcinoma surveillance: is one-size-fits-all strategy outdated? Curr Hepatol Rep. 2017;16(1):64–71. doi:10.1007/s11901-017-0336-z

114. Tanabe KK, Lemoine A, Finkelstein DM, et al. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA. 2008;299(1):53–60. doi:10.1001/jama.2007.65

115. Abu Dayyeh BK, Yang M, Fuchs BC, et al. A functional polymorphism in the epidermal growth factor gene is associated with risk for hepatocellular carcinoma. Gastroenterology. 2011;141(1):141–149. doi:10.1053/j.gastro.2011.03.045

116. Hoshida Y, Villanueva A, Sangiovanni A, et al. Prognostic gene expression signature for patients with hepatitis C-related early-stage cirrhosis. Gastroenterology. 2013;144(5):1024–1030. doi:10.1053/j.gastro.2013.01.021

117. King LY, Canasto-Chibuque C, Johnson KB, et al. A genomic and clinical prognostic index for hepatitis C-related early-stage cirrhosis that predicts clinical deterioration. Gut. 2015;64(8):1296–1302. doi:10.1136/gutjnl-2014-307862

Source: Journal of Hepatocellular Carcinoma.
Originally published July 24, 2019.

READ FULL ARTICLE Curated publisher From Dovepress