PT is an attractive modern radiation modality, with unique properties that may significantly reduce the dose to OARs and potentially spare late toxicity compared to modern photon techniques in patients affected with lymphomas, particularly for those patients with a mediastinal involvement. However, the potential benefit is variable and is based on individual factors as gender, age and disease distribution that should be taken into account on a “case-by-case” accurate analysis. Given the limited number of PT facilities, the additional costs of protons compared to photons, the few clinical reports available to date and some pending issues concerning the biological effect, and the physical properties, it seems reasonable to offer a proton treatment to lymphoma patients only after the achievement of a good competency in the field. Lastly, a careful selection of patients who may benefit from PT, after a proper plan comparison with modern photon therapy, might be a significant step towards further optimized and a more safe RT delivery in hematological diseases.


Continue Reading

The authors report no conflicts of interest in this work

Umberto Ricardi,1 Maja V. Maraldo,2 Mario Levis,1 Rahul R. Parikh3

1Department of Oncology, University of Torino, Torino, Italy; 2Department of Clinical Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; 3Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA

Correspondence: Mario Levis
Department of Oncology, University of Torino, Via Genova 3, Torino 10125, Italy
Tel +39 011 6334119
Fax +39 011 6336614
Email [email protected]


1. Engert A, Schiller P, Josting A, et al. Involved-field radiotherapy is equally effective and less toxic compared with extended-field radiotherapy after four cycles of chemotherapy in patients with early- stage unfavorable Hodgkin’s lymphoma: results of the HD8 trial of the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2003;21:3601–3608.

2. Eich HT, Diehl V, Görgen H, et al. Intensified chemotherapy and dose-reduced involved-field radiotherapy in patients with early un- favorable Hodgkin’s lymphoma: final analysis of the German Hodgkin Study Group HD11 trial. J Clin Oncol. 2010;28:4199–4206. doi:10.1200/JCO.2010.29.8018

3. Viviani S, Zinzani PL, Rambaldi A, et al. Michelangelo Foundation; Gruppo Italiano di Terapie Innovative nei Linfomi; Intergruppo Italiano Linfomi: ABVD versus BEACOPP for Hodgkin’s lymphoma when high-dose salvage is planned. N Engl J Med. 2011;365:203–212. doi:10.1056/NEJMoa1100340

4. Mounier N, Brice P, Bologna S, et al. Lymphoma Study Association (LYSA): ABVD (8 cycles) versus BEACOPP (4 escalated cycles ≥ 4 baseline): final results in stage III-IV low-risk Hodgkin lymphoma (IPS 0-2) of the LYSA H34 randomized trial. Ann Oncol. 2014;25:1622–1628. doi:10.1093/annonc/mdu189

5. Horner M, Ries L, Krapcho M, et al. SEER cancer statistics review, 1975–2014. National Cancer Institute. 2017 Available from: Accessed September 21, 2019.

6. Rutenberg MS, Flampouri S, Hoppe BS. Proton therapy for Hodgkin lymphoma. Curr Hematol Malig Rep. 2014;9:203–211. doi:10.1007/s11899-014-0212-7

7. Aleman BM, van Den Belt-Dusebout AW, De Bruin ML, et al. Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood. 2007;109:1878–1886. doi:10.1182/blood-2006-07-034405

8. van Nimwegen FA, Schaapveld M, Cutter DJ, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol. 2015;34:235–243. doi:10.1200/JCO.2015.63.4444

9. Schaapveld M, Aleman BM, van Eggermond AM, et al. Second cancer risk up to 40 years after treatment for Hodgkin’s lymphoma. N Engl J Med. 2015;373:2499–2511. doi:10.1056/NEJMoa1505949

10. Radford J, Illidge T, Counsell N, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372:1598–1607. doi:10.1056/NEJMoa1408648

11. Raemaekers JM, André MP, Federico M, et al. Omitting radiotherapy in early positron emission tomography-negative Stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 Trial. J Clin Oncol. 2014;32:1188–1194. doi:10.1200/JCO.2013.51.9298

12. Ho CK, Flampouri S, Hoppe BS. Proton therapy in the management of lymphoma. Cancer J. 2014;20:387–392. doi:10.1097/PPO.0000000000000076

13. Specht L, Yahalom J, Illidge T, et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89:854–862. doi:10.1016/j.ijrobp.2013.05.005

14. Rwigema JM, Lagendijk JA, van der Laan PH, et al. A model-based approach to predict short-term toxicity benefits with proton therapy for oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2019;104:553–562. doi:10.1016/j.ijrobp.2018.12.055

15. Illidge T, Specht L, Yahalom J, et al. Modern radiation therapy for nodal non-Hodgkin lymphoma – target definition and dose guidelines from the international lymphoma radiation oncology group. Int J Radiat Oncol Biol Phys. 2014;89:49–58. doi:10.1016/j.ijrobp.2014.01.006

16. Dabaja BS, Hoppe BS, Plastaras JP, et al. Proton therapy for adults with mediastinal lymphomas: the International Lymphoma Radiation Oncology Group guidelines. Blood. 2018;132:1635–1646. doi:10.1182/blood-2018-03-837633

17. Edvardsson A, Kugele M, Alkner S, et al. Comparative treatment planning study for mediastinal Hosgkin’s lymphoma: impact on normal tissue dose using deep inspiration breath hold proton and photon therapy. Acta Oncol. 2019;58:95–104. doi:10.1080/0284186X.2018.1512153

18. Moyers MF, Miller DW, Bush DA, Slater JD. Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys. 2001;49:1429–1438. doi:10.1016/s0360-3016(00)01555-8

19. Urie M, Goitein M, Wagner M. Compensating for heterogeneities in proton radiation therapy. Phys Med Biol. 1984;29:553–566. doi:10.1088/0031-9155/29/5/008

20. Pacelli R, Caroprese M, Palma G, et al. Technological evolution of radiation treatment: implications for clinical applications. Semin Oncol. 2019; in press. doi:10.1053/j.seminoncol.2019.07.004

21. Hoppe BS, Flampouri S, Zaiden R, et al. Involved-node proton therapy in combined modality therapy for Hodgkin lymphoma: results of a Phase 2 study. Int J Radiat Oncol Biol Phys. 2014;89:1053–1059. doi:10.1016/j.ijrobp.2014.04.029

22. Hoppe BS, Tsai H, Larson G, et al. Proton therapy patterns-of-care and early outcomes for Hodgkin lymphoma: results from the Proton Collaborative Group Registry. Acta Oncol. 2016;55:1378–1380. doi:10.1080/0284186X.2016.1197422

23. Ntentas G, Dedeckova K, Andrlik M, et al. Clinical intensity modulated proton therapy for Hodgkin lymphoma: which patients benefit the most? Practical Rad Onc. 2019;9:179–197. doi:10.1016/j.prro.2019.01.006

24. Sachsman S, Flampouri S, Li Z, Lynch J, Mendenhall NP, Hoppe BS. Proton therapy in the management of non-Hodgkin lymphoma. Leuk Lymphoma. 2015;56:2608–2612. doi:10.3109/10428194.2015.1014364

25. Plastaras JP, Maity A, Flampouri S, et al. Bi-institutional report on consolidative proton therapy after initial chemotherapy for mediastinal diffuse large B-cell and primary mediastinal large B-cell lymphomas [abstract]. Int J Radiat Oncol Biol Phys. 2018;102(S3):E350. doi:10.1016/j.ijrobp.2018.07.1061

26. Konig L, Bougatf N, Horner-Rieber J, et al. Consolidative mediastinal irradiation of malignant lymphoma using active scanning proton beams: clinical outcome and dosimetric comparison. Strahlenther Onkol. 2019. doi:10.1007/s00066-019-01460-7

27. Tseng YD, Hoppe BS, Miller D, et al. Rates of toxicity and outcomes after mediastinal proton therapy for relapsed/refractory lymphoma [abstract]. Int J Radiat Oncol Biol Phys. 2017;99(S2):S62. doi:10.1016/j.ijrobp.2017.06.155

28. Hoppe BS, Hill-Kayser CE, Tseng YD, et al. Consolidative proton therapy after chemotherapy for patients with Hodgkin lymphoma. Ann Oncol. 2017;28:2179–2184. doi:10.1093/annonc/mdx287

29. Ricardi U, Dabaja B, Hodgson DC. Proton therapy in mediastinal Hodgkin lymphoma: moving form dosimetric prediction to clinical evidence. Ann Oncol. 2017;28:2049–2050. doi:10.1093/annonc/mdx356

30. Winkfield KM, Gallotto S, Niemierko A, et al. Proton therapy for mediastinal lymphomas: an 8-year single-institution report [abstract]. Int J Radiat Oncol Biol Phys. 2015;93:E461. doi:10.1016/j.ijrobp.2015.07.1725

31. Wray J, Flampouri S, Slayton W, et al. Proton therapy for pediatric Hodgkin lymphoma. Pediatr Blood Cancer. 2016;63:1522–1526. doi:10.1002/pbc.26044

32. Plastaras JP, Vogel J, Elmongy H, et al. First clinical report of pencil beam scanned proton therapy for mediastinal lymphoma [abstract]. Int J Radiat Oncol Biol Phys. 2016;96:E497. doi:10.1016/j.ijrobp.2016.06.1876

33. Dedeckova K, Mocikova H, Markova J, et al. T011: proton radiotherapy for mediastinal Hodgkin lymphoma: single institution experience [abstract]. Haematologica. 2016;101:12–13.

34. Paganetti H, Giantsoudi D. Relative biologic effectiveness uncertainties and implications for beam arrangements and dose constraints in proton therapy. Semin Radiat Oncol. 2018;28:256–263. doi:10.1016/j.semradonc.2018.02.010

35. Paganetti H. Relative biologic effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, linear energy transfer. Phys Med Biol. 2014;59:R419–R472. doi:10.1088/0031-9155/59/22/R419

36. Cuaron JJ, Chang C, Lovelock M, et al. Exponential increase in relative biological effectiveness along distal edges of proton Bragg peak as measured by deoxyribonucleic acid double-strand breaks. Int J Radiat Oncol Biol Phys. 2016;95:62–69. doi:10.1016/j.ijrobp.2016.02.018

37. International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting proton-beam therapy. ICRU Report 78. 1996.

38. Pagnetti H. Relating proton treatments to photon treatments via the relative biological effectiveness – should we revise current clinical practice? Int J Radiat Oncol Biol Phys. 2015;91:892–894. doi:10.1016/j.ijrobp.2014.11.021

39. Dabaja BS, Mikhaeel G. In the battle between protons and photons for hematologic malignancies, the patient must win. Int J Radiat Oncol Biol Phys. 2015;95:43–45. doi:10.1016/j.ijrobp.2015.09.043

40. Eley JG, Newhauser WD, Ritcher D, Luchtenborg R, Saito N, Bert C. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors. Phys Med Biol. 2015;60:1717–1740. doi:10.1088/0031-9155/60/4/1717

41. Eley JG, Newhauser WD, Luchtenborg R, Graeff C, Bert C. 4D optimization of scanned ion beam tracking therapy for moving tumors. Phys Med Biol. 2014;59:3431–3452. doi:10.1088/0031-9155/59/13/3431

42. Levis M, De Luca V, Fiandra C, et al. Plan optimization for mediastinal radiotherapy: estimation of coronary arteries motion with ECG-gated cardiac imaging and creation of compensatory expansion margins. Radioth Oncol. 2018;127:481–486. doi:10.1016/j.radonc.2018.04.014

43. Levis M, Filippi AR, Fiandra C, et al. Inclusion of heart substructures in the optimization process of volumetric modulated arc therapy techniques may reduce the risk of heart disease in Hodgkin’s lymphoma patients. Radioth Oncol. 2019;138:52–58. doi:10.1016/j.radonc.2019.05.009

44. Rechner LA, Maraldo MV, Vogelius IR, et al. Life years lost attributable to late effects after radiotherapy for early stage Hodgkin lymphoma: the impact of proton therapy and/or deep inspiration breath hold. Radioth Oncol. 2017;125:41–47. doi:10.1016/j.radonc.2017.07.033

45. Baues C, Marnitz S, Engert A, et al. Proton versus photon deep inspiration breath hold technique in pateints with Hodgkin lymphoma and mediastinal radiation. Radiat Oncol. 2018;13:122. doi:10.1186/s13014-018-1066-2

46. Everett AS, Hoppe BS, Louis D, et al. Comparison of techniques for involved-site radiation therapy in patients with lower mediastinal lymphoma. Pract Radiat Oncol. 2019. doi:10.1016/j.prro.2019.05.009

47. Li J, Dabaja BS, Reed V, et al. Rationale for and preliminary results of proton beam therapy for mediastinal lymphoma. Int J Radiat Oncol Biol Phys. 2011;81:167–174. doi:10.1016/j.ijrobp.2010.05.007

48. Knausl B, Lutgendorf-Caucig C, Hopfgartner J, et al. Can treatment of pediatric Hodgkin’s lymphoma be improved by PET imaging and proton therapy? Strahlenther Onkol. 2013;189:54–61. doi:10.1007/s00066-012-0235-8

49. Hoppe BS, Flampouri S, Su Z, et al. Consolidative involved-node proton therapy for stage I-IIIB mediastinal Hodgkin lymphoma: preliminary dosimetric outcomes from a phase II study. Int J Radiat Oncol Biol Phys. 2012;83:260–267. doi:10.1016/j.ijrobp.2011.06.1959

50. Hoppe BS, Flampouri S, Su Z, et al. Effective dose reduction to cardiac structures using protons compared with 3DCRT and IMRT in mediastinal Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2012;84:449–455. doi:10.1016/j.ijrobp.2011.12.034

51. Sachsman S, Hoppe BS, Mendenhall NP, et al. Proton therapy to the subdiaphragmatic region in the management of patients with Hodgkin lymphoma. Leuk Lymphoma. 2015;56:2019–2024. doi:10.3109/10428194.2014.975802

52. Jørgensen AY, Maraldo MV, Brodin NP, et al. The effect on esophagus after different radiotherapy techniques for early stage Hodgkin’s lymphoma. Acta Oncol. 2013;52:1559–1565. doi:10.3109/0284186X.2013.813636

53. Maraldo MV, Brodin NP, Aznar MC, et al. Estimated risk of cardiovascular disease and secondary cancers with modern highly conformal radiotherapy for early-stage mediastinal Hodgkin lymphoma. Ann Oncol. 2013;24:113–118. doi:10.1093/annonc/mdt156

54. Maraldo MV, Brodin NP, Aznar MC, et al. Doses to carotid arteries after modern radiation therapy for Hodgkin lymphoma: is stroke still a late effect of treatment? Int J Radiat Oncol Biol Phys. 2013;87:297–303. doi:10.1016/j.ijrobp.2013.06.004

55. Maraldo MV, Brodin NP, Aznar MC, et al. Doses to head and neck normal tissues for early stage Hodgkin lymphoma after involved node radiotherapy. Radiother Oncol. 2014;110:441–447. doi:10.1016/j.radonc.2013.09.027

56. Zeng C, Plastaras JP, James P, et al. Proton pencil beam scanning for mediastinal lymphoma: treatment planning and robustness assessment. Acta Oncol. 2016;55:1132–1138. doi:10.1080/0284186X.2016.1191665

57. Chera BS, Rodriguez C, Morris CG, et al. Dosimetric comparison of three different involved nodal irradiation techniques for stage II Hodgkin’s lymphoma patients: conventional radiotherapy, intensity-modulated radiotherapy, and three-dimensional proton radiotherapy. Int J Radiat Oncol Biol Phys. 2009;75:1173–1180. doi:10.1016/j.ijrobp.2008.12.048

58. Horn S, Fournier-Bidoz N, Pernin V, et al. Comparison of passive-beam, proton therapy, helical tomotherapy and 3D conformal radiation therapy in Hodgkin’s lymphoma female patients receiving involved-field or involved site radiation therapy. Cancer Radiother. 2016;20:98–103. doi:10.1016/j.canrad.2015.11.002

59. Pinnix CC, Smith GL, Milgrom S, et al. Predictors of radiation pneumonitis in patients receiving intensity modulated radiation therapy for Hodgkin and non-Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2015;92:175–182. doi:10.1016/j.ijrobp.2015.02.010

60. Filippi AR, Ragona R, Piva C, et al. Optimized volumetric modulated arc therapy versus 3d-CRT for early stage mediastinal Hodgkin lymphoma without axillary involvement: a comparison of second cancers and heart disease risk. Int J Radiat Oncol Biol Phys. 2015;92:161–168. doi:10.1016/j.ijrobp.2015.02.030

61. Aznar MC, Maraldo MV, Schut DA, et al. Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both? Int J Radiat Oncol Biol Phys. 2015;92:169–174. doi:10.1016/j.ijrobp.2015.01.013

62. Brodin NP, Maraldo MV, Aznar MC, et al. Interactive decision-support tool for risk-based radiation therapy plan comparison for Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2014;88:433–445. doi:10.1016/j.ijrobp.2013.10.028

63. Pinnix CC, Cella L, Andraos TY, et al. Predictors of hypothyroidism in Hodgkin lymphoma survivors after intensity modulated versus 3-dimensional radiation therapy. Int J Radiat Oncol Biol Phys. 2018;101:530–540. doi:10.1016/j.ijrobp.2018.03.003

Source: OncoTargets and Therapy.
Originally published October 1, 2019.

READ FULL ARTICLE Curated publisher From Dovepress