(To view a larger version of Table 1, click here.)

Correlation of clinicopathologic characteristics with cachexia

The chi-square test, independent t-test, and Mann–Whitney U-test were used to examine the relationship between clinical characteristics and cachexia. Age (P<0.001), BMI (P<0.001), PLR (P=0.001), NLR (P<0.001), skeletal muscle mass (P<0.001), grip strength (P<0.001), preoperative hemoglobin (P<0.001), preoperative albumin (P<0.001), ASA (P<0.001), Charlson comorbidity index (CCI) (P<0.001), preoperative bleeding (P=0.006), preoperative obstruction (P<0.001), tumor size (P=0.016), pathologic type (P<0.001), and TNM stage (P<0.001) were significantly correlated with cachexia. Further, the postoperative length of stay was longer, and the total hospitalization cost was higher in the cachexia group (Table 1). There was no significant association between cachexia and gender, visceral fat area, stride speed, histopathological differentiation, surgical bleeding, or abdominal surgery history.

Cachexia was independently associated with worse OS in GC patients

Continue Reading

As shown in Figure 1, patients with cachexia had a poor outcome: the median survival time in patients with cachexia (29.2 months) was shorter than in those without (35.7 months) (P<0.001). On univariate analysis, cachexia was also associated with worse OS (hazard ratio [HR] 1.976, 95% confidence interval [CI] 1.471–2.653, P<0.001). Additionally, age (HR 2.107, 95% CI 1.569–2.830, P<0.001), lower BMI (HR 1.781, 95% CI 1.120–2.834, P=0.015), higher ASA stage (HR 1.654, 95% CI 1.173–2.332, P=0.004), higher CCI (CCI 1–3: HR 1.412, 95% CI 1.041–1.914, P=0.026; CCI 4–6: HR 2.133, 95% CI 1.103–4.126, P=0.024), lower preoperative grip strength (HR 1.858, 95% CI 1.365–2.530, P<0.001), preoperative anemia (HR 1.520, 95% CI 1.072–2.155, P=0.019), preoperative hypoalbuminemia (HR 2.344, 95% CI 1.272–4.320, P=0.006), readmission (HR 1.940, 95% CI 1.218–3.089, P=0.005), larger tumor size (HR 2.830, 95% CI 2.102–3.810, P<0.001), higher TNM stage (stage II: HR 2.747, 95% CI 1.480–5.098, P<0.001; stage III: HR 7.823, 95% CI 4.654–13.149, P<0.001), anastomotic method (Billroth II: HR 2.612, 95% CI 1.661–4.108, P<0.001; Roux-en-Y: HR 2.909, 95% CI 2.004–4.224, P<0.001), intraoperative blood transfusion (HR 2.844, 95% CI 1.833–4.411, P<0.001), intraoperative bleeding (HR 2.835, 95% CI 1.813–4.434, P<0.001), postoperative complications above grade 2 (HR 2.095, 95% CI 1.526–2.877, P<0.001), and combined operation (HR 2.284, 95% CI 1.515–3.444, P<0.001) were associated with poor OS. Furthermore, whole stomach cancer (HR 4.125, 95% CI 2.159–7.879, P<0.001) and a higher NLR (HR 1.482, 95% CI 1.101–1.994, P=0.009) were also associated with worse OS (Table 2). No other clinicopathologic factors were statistically linked to outcome. On multivariate analysis, cachexia (HR 1.456, 95% CI 1.070–1.981, P=0.017), age (HR 1.811, 95% CI 1.334–2.458, P<0.001), readmission (HR 2.559, 95% CI 1.562–4.191, P<0.001), tumor size (HR 1.639, 95% CI 1.187–2.261, P=0.003), TNM stage (stage II: HR 2.215, 95% CI 1.155–4.248, P=0.017; stage III: HR 5.758, 95% CI 3.285–10.094, P<0.001), whole stomach cancer (HR 2.639, 95% CI 1.358–5.130, P<0.001), and combined operation (HR 1.598, 95% CI 1.042–2.449, P=0.032) were independently associated with worse OS (Table 2).

Figure 1

Table 2

(To view a larger version of Table 2, click here.)

Cachexia was associated with worse prognosis in younger patients

As shown in Figure 2, of the 575 GC patients, most patients were 50–80 years old. There were 29.4% (5/17), 27.8% (10/36), 34.1% (46/135), 28.3% (58/205), 45.7% (74/162), and 65.0% (13/20) of patients younger than 40, 41–50, 51–60, 61–70, 71–80 and older than 81 age groups, respectively, diagnosed with cachexia.

As only 17 patients were younger than 40 years old and 20 patients were older than 80 years old, we further subdivided the patients into 4 groups, namely, patients aged younger than 50 (group I), patients 51–60 years old (group II), patients 61–70 years old (group III), and patients older than 71 (group IV). Interestingly, cachexia was able to predict poor outcome in the younger patients. The median survival in patients with cachexia was statistically shorter than that in those without cachexia in group I (P=0.015), group II (P=0.022), and group III (P=0.029). Although the median survival was also shorter in cachexia patients in group IV, no statistical differences were found (P=0.117) (Figure 3A). Additionally, as shown in Table 3, the effect of cachexia on prognosis decreased as age increased, and cachexia was a more effective risk factor for survival in group I (HR 4.947, 95% CI 1.181–20.727, P=0.029) than the other three groups (group II: HR 2.232, 95% CI 1.103–4.518, P=0.026; group III: HR 1.806, 95% CI 1.052–3.098, P=0.032; group IV: HR 1.411, 95% CI 0.915–2.174, P=0.119). Further, cachexia only significantly affected postoperative length of stay and hospitalization costs in group I; no such differences were found in the other three groups (Figure 3B).

Figure 2

Figure 3

Table 3

READ FULL ARTICLE Curated publisher From Dovepress