R/R is the subset of AML with worse long-term outcomes with standard salvage therapies. The investigation of new targeted therapies (IDH and FLT3) has shown promising results, achieving a better antileukemic efficacy and safety profile in comparison with salvage regimens. In this review, we have analyzed the impact of IDH1mut inhibitors, a new targeted therapy with positive results in R/R AML.

Two IDHmut inhibitors (ivosidenib and enasidenib) have achieved fast approval with Phase I/II clinical trial results in the subgroup of IDH1/2mut R/R AML, pending further studies to demonstrate a significant improvement in survival and/or other long-term outcomes. Nevertheless, with the advent of new targeted therapies, the diagnostic workup of R/R AML will now include a systematic screening for IDH1 mutations, in order to personalize treatments. Ongoing clinical trials are testing the use of IDHmut inhibitors as single agent or in combination with HMAs or intensive chemotherapy as frontline therapy and the role of these inhibitors in post-transplant maintenance.

Continue Reading


This study was supported in part by a grant from the “Instituto Carlos III” (PI16/00665).


Dr Pau Montesinos reports grants from Celgene and Daiichi Sankyo during the conduct of the study and is on the advisory board for AGIOS, Celgene and Daiichi Sankyo. The authors report no other conflicts of interest in this work.

Juan Eduardo Megías-Vericat,1 Octavio Ballesta-López,1 Eva Barragán,2,3 Pau Montesinos2,3

1Servicio de Farmacia, Área del Medicamento, Hospital Universitari i Politècnic La Fe, Valencia, Spain; 2Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe, Valencia, Spain; 3CIBERONC, Instituto Carlos III, Madrid, Spain


1. Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–427. doi:10.1182/blood-2016-08-733196

2. Megias-Vericat JE, Martinez-Cuadron D, Sanz MA, Montesinos P. Salvage regimens using conventional chemotherapy agents for relapsed/refractory adult AML patients: a systematic literature review. Ann Hematol. 2018;97(7):1115–1153. doi:10.1007/s00277-018-3304-y

3. DiNardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90(8):732–736. doi:10.1002/ajh.24072

4. Bertoli S, Tavitian S, Delabesse E, Sarry A, Huguet F, Récher C. Outcome of AML patients with IDH1 or IDH2 mutations from diagnosis and refractory/relapse phase of the disease in routine practice. Blood. 2016;128(22):1718. doi:10.1182/blood-2016-06-724161

5. Dhillon S. Ivosidenib: first Global Approval. Drugs. 2018;78(14):1509–1516. doi:10.1007/s40265-018-0978-3

6. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. doi:10.1136/bmj.b2651

7. Kaushansky K, Lichtman MA, Prchal JT, et al. Williams Hematology. 9th ed. New York: McGraw-Hill; 2016.

8. Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28(22):3636–3643. doi:10.1200/JCO.2010.28.3762

9. Schnittger S, Haferlach C, Ulke M, Alpermann T, Kern W, Haferlach T. IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood. 2010;116(25):5486–5496. doi:10.1182/blood-2010-02-267955

10. Nassereddine S, Lap CJ, Haroun F, Tabbara I. The role of mutant IDH1 and IDH2 inhibitors in the treatment of acute myeloid leukemia. Ann Hematol. 2017;96(12):1983–1991. doi:10.1007/s00277-017-3116-5

11. Garrett-Bakelman FE, Melnick AM, Mutant IDH. a targetable driver of leukemic phenotypes linking metabolism, epigenetics and transcriptional regulation. Epigenomics. 2016;8(7):945–957. doi:10.2217/epi-2016-0008

12. Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med. 2010;16(9):387–397. doi:10.1016/j.molmed.2010.07.002

13. Platt MY, Fathi AT, Borger DR, et al. Detection of dual IDH1 and IDH2 mutations by targeted next-generation sequencing in acute myeloid leukemia and myelodysplastic syndromes. J Mol Diagn. 2015;17(6):661–668. doi:10.1016/j.jmoldx.2015.06.004

14. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28(14):2348–2355. doi:10.1200/JCO.2009.27.3730

15. Patel JP, Gonen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079–1089. doi:10.1056/NEJMoa1114705

16. Rampal R, Alkalin A, Madzo J, et al. DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep. 2014;9(5):1841–1855. doi:10.1016/j.celrep.2014.11.004

17. Zhou KG, Jiang LJ, Shang Z, et al. Potential application of IDH1 and IDH2 mutations as prognostic indicators in non-promyelocytic acute myeloid leukemia: A meta-analysis. Leuk Lymphoma. 2012;53(12):2423–2429. doi:10.3109/10428194.2012.695359

18. Patel KP, Ravandi F, Ma D, et al. Acute myeloid leukemia with IDH1 or IDH2 mutation. Am J Clin Pathol. 2011;135(1):35–45. doi:10.1309/AJCPD7NR2RMNQDVF

19. Boissel N, Nibourel O, Renneville A, et al. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association group. J Clin Oncol. 2010;28(23):3717–3723. doi:10.1200/JCO.2010.28.2285

20. Patel KP, Barkoh BA, Chen Z, et al. Diagnostic testing for IDH1 and IDH2 variants in acute myeloid leukemia an algorithmic approach using high resolution melting curve analysis. J Mol Diagn. 2011;13(6):678–686. doi:10.1016/j.jmoldx.2011.06.004

21. Mahdieh N, Rabbani B. An overview of mutation detection methods in genetic disorders. Iran J Pediatr. 2013;23(4):375–388.

22. Horbinski C, Kelly L, Nikiforov YE, Durso MB, Nikiforova MN. Detection of IDH1 and IDH2 mutations by fluorescence melting curve analysis as a diagnostic tool for brain biopsies. J Mol Diagn. 2010;12(4):487–492. doi:10.2353/jmoldx.2010.090228

23. Gorniak P, Ejduk A, Borg K, et al. Comparison of high-resolution melting analysis with direct sequencing for the detection of recurrent mutations in DNA methyltransferase 3A and isocitrate dehydrogenase 1 and 2 genes in acute myeloid leukemia patients. Eur J Haematol. 2016;96(2):181–187. doi:10.1111/ejh.12566

24. Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A. 2003;100(15):8817–8822. doi:10.1073/pnas.1133470100

25. Alonso CM, Llop M, Sargas C, et al. Clinical utility of a next-generation sequencing panel for acute myeloid leukemia diagnostics. J Mol Diagn. 2019;21(2):228-240. doi:10.1016/j.jmoldx.2018.09.009 .

26. Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res. 2012;18(20):5562–5571. doi:10.1158/1078-0432.CCR-12-1773

27. Chou WC, Hou HA, Chen CY, et al. Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood. 2010;115(14):2749–2754. doi:10.1182/blood-2009-11-253070

28. Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116(12):2122–2126. doi:10.1182/blood-2009-11-250878

29. Wagner K, Damm F, Gohring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol. 2010;28(14):2356–2364. doi:10.1200/JCO.2009.27.6899

30. Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood. 2011;118(2):409–412. doi:10.1182/blood-2010-12-322479

31. Chotirat S, Thongnoppakhun W, Promsuwicha O, Boonthimat C, Auewarakul CU. Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. J Hematol Oncol. 2012;5(1):5. doi:10.1186/1756-8722-5-5

32. Ravandi F, Patel K, Luthra R, et al. Prognostic significance of alterations in IDH enzyme isoforms in patients with AML treated with high-dose cytarabine and idarubicin. Cancer. 2012;118(10):2665–2673. doi:10.1002/cncr.26580

33. Willander K, Falk IJ, Chaireti R, et al. Mutations in the isocitrate dehydrogenase 2 gene and IDH1 SNP 105C > T have a prognostic value in acute myeloid leukemia. Biomark Res. 2014;2(1):18. doi:10.1186/2050-7771-2-18

34. Feng JH, Guo XP, Chen YY, Wang ZJ, Cheng YP, Tang YM. Prognostic significance of IDH1 mutations in acute myeloid leukemia: a meta-analysis. Am J Blood Res. 2012;2(4):254–264.

35. Xu Q, Li Y, Lv N, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of patients with acute myeloid leukemia: a systematic review and meta-analysis. Clin Cancer Res. 2017;23(15):4511–4522. doi:10.1158/1078-0432.CCR-16-2628

36. Wattad M, Weber D, Döhner K, et al. Impact of salvage regimens on response and overall survival in acute myeloid leukemia with induction failure. Leukemia. 2017;31(6):1306–1313. doi:10.1038/leu.2017.23

37. Hills RK, Gale R, Linch DC, et al. Outcomes of relapsed/refractory patients with IDH1/2 mutated AML treated with non-targeted therapy: results from the NCRI AML trials [abstract]. Blood. 2018;132(Suppl 1):664.

38. DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–2398. doi:10.1056/NEJMc1711583

39. Pollyea DA, Dinardo CD, de Botton S, et al. Ivosidenib (IVO; AG-120) in mutant IDH1 relapsed/refractory acute myeloid leukemia (R/R AML): results of a phase 1 study [abstract plus oral communication]. J Clin Oncol. 2018;36(Suppl 15):7000. doi:10.1200/JCO.2018.36.15_suppl.7000

40. US Food & Drug Administration. FDA approves first targeted treatment for patients with relapsed or refractory acute myeloid leukemia who have a certain genetic mutation [home page on the Internet]. 2018. Available from: Accessed January 17, 2019.

41. Agios Pharmaceuticals. TIBSOVO ® (Ivosidenib): US prescribing Information [home page on the internet]. 2018. Available from: Accessed January17, 2019.

42. Le K, Wada R, Dai D, et al. Population pharmacokinetics of ivosidenib (AG-120) in patients with IDH1-mutant advanced hematologic malignancies [abstract]. Blood. 2018;132(Suppl 1):1394.

43. Birendra KC, DiNardo CD. Evidence for clinical differentiation and differentiation syndrome in patients with acute myeloid leukemia and IDH1 mutations treated with the targeted mutan IDH1 inhibitor, AG-120. Clin Lymphoma Myeloma Leuk. 2016;16(8):460–465. doi:10.1016/j.clml.2016.04.006

44. Fathi AT, DiNardo CD, Kline I, et al. Differentiation syndrome associated with enasidenib, a selective inhibitor of mutant isocitrate dehydrogenase 2: analysis of a phase 1/2 study. JAMA Oncol. 2018;4(8):1106–1110. doi:10.1001/jamaoncol.2017.4695

45. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–731. doi:10.1182/blood-2017-04-779405

46. Norsworthy KJ, Mulkey F, Ward AF, et al. Incidence of differentiation syndrome with ivosidenib (IVO) and enasidenib (ENA) for treatment of patients with relapsed or refractory (R/R) isocitrate dehydrogenase (IDH)1- or IDH2-mutated acute myeloid leukemia (AML): a systematic analysis by the U.S. Food and Drug Administration (FDA) [abstract]. Blood. 2018;132(Suppl 1):288.

47. Montesinos P, Bergua JM, Vellenga E, et al. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors. Blood. 2009;113(4):775–783. doi:10.1182/blood-2008-07-168617

48. Roboz GJ, DiNardo CD, Stein EM, et al. Ivosidenib (AG-120) induced durable remissions and transfusion independence in patients with IDH1-mutant untreated AML: results from a phase 1 dose escalation and expansion study [abstract plus oral communication]. Blood. 2018;132(Suppl 1):561.

49. Stein E, Dinardo CD, Jang JH, et al. AGILE: A phase 3, multicenter, randomized, placebo-controlled study of ivosidenib in combination with azacitidine in adult patients with previously untreated acute myeloid leukemia with an IDH1 mutation. J Clin Oncol. 2018;36(Suppl15):TPS7074. doi:10.1200/JCO.2018.36.15_suppl.TPS7074

50.  DiNardo CD, Stein AS, Fathi AT, et al. Mutant isocitrate dehydrogenase (mIDH) inhibitors, enasidenib or ivosidenib, in combination with azacitidine (AZA): preliminary results of a phase 1b/2 study in patients with newly diagnosed acute myeloid leukemia (AML) [abstract plus oral communication]. Blood. 2017;130(Suppl 1):639.

51. Dinardo CD, Stein AS, Stein EM, et al. Mutant IDH (mIDH) inhibitors, ivosidenib or enasidenib, with azacitidine (AZA) in patients with acute myeloid leukemia (AML) [abstract plus poster]. J Clin Oncol. 2018;36(Suppl 15):7042. doi:10.1200/JCO.2018.36.15_suppl.7042

52. Stein EM, DiNardo CD, Fathi AT, et al. Ivosidenib or enasidenib combined with induction and consolidation chemotherapy in patients with newly diagnosed AML with an IDH1 or IDH2 mutation is safe, effective, and leads to MRD-negative complete remissions [abstract plus oral communication]. Blood. 2018;132(Suppl 1):560. doi:10.1182/blood-2018-99-110449.

53. Watts J, Baer MR, Yang J, et al. Phase 1 study of the IDH1m inhibitor FT-2102 as a single agent in patients with IDH1m acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) [abstract]. Blood. 2018;132 (Suppl 1):1453. doi: 10.1182/blood-2018-99-114263.

54. Chopra VS, Avanzino B, Mavrommatis K, Olshen A, DiMartino J, MacBeth KJ. Functional characterization of combining epigenetic modifiers azacitidine and AG-221 in the TF-1: IDH2R140QAML model [abstract]. Cancer Res. 2016;76(Suppl 14):2280. doi:10.1158/0008-5472.CAN-16-0584

55. Yen K, Chopra VS, Tobin E, et al. Functional characterization of the ivosidenib (AG-120) and azacitidine combination in a mutant IDH1 AML cell model [abstract]. Cancer Res. 2018;8(Suppl 1):4956. doi:10.1158/1538-7445.AM2018-4956

56. Cortes JE, Watts J, Prebet T, et al. FT-2102, an IDH1m inhibitor, in combination with azacitidine in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS): results from a phase 1 study [abstract]. Blood. 2018;132 (Suppl 1):1452; doi: 10.1182/blood-2018-99-114126.

57. DiNardo CD, Schimmer AD, Yee KWL, et al. A phase I study of IDH305 in patients with advanced malignancies including relapsed/refractory AML and MDS that harbor IDH1R132 mutations. Blood. 2016;128(22):1073. doi:10.1182/blood-2016-06-724161

58. Mellinghoff IK, Penas-Prado M, Peters KB, et al. Phase 1 study of AG-881, an inhibitor of mutant IDH1/IDH2, in patients with advanced IDH-mutant solid tumors, including glioma. J Clin Oncol. 2018;36(Suppl 15):2002. doi:10.1200/JCO.2018.36.15_suppl.2002

59. Chaturvedi A, Herbst L, Pusch S, et al. Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo. Leukemia. 2017;31(10):2020–2028. doi:10.1038/leu.2017.46

60. Chaturvedi A, Gupta C, Goparaju R, et al. Synergistic activity of IDH1 inhibitor bay-1436032 with azacitidine in IDH1 mutant acute myeloid leukemia [abstract]. Blood. 2017;130(Suppl 1):1352.

61. Chan SM, Thomas D, Corces-Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21(2):178–184. doi:10.1038/nm.3788

62. Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–1117. doi:10.1158/2159-8290.CD-16-0313

63. DiNardo CD, Rausch CR, Benton C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol. 2018;93(3):401–407. doi:10.1002/ajh.25000

64. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17. doi:10.1182/blood-2018-08-868752

65. Emadi A, Jun SA, Tsukamoto T, Fathi AT, Minden MD, Dang CV. Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp Hematol. 2014;42(4):247–251. doi:10.1016/j.exphem.2013.12.001

66. Fathi AT, Wander SA, Faramand R, Emadi A. Biochemical, epigenetic, and metabolic approaches to target IDH mutations in acute myeloid leukemia. Semin Hematol. 2015;52(3):165–171. doi:10.1053/j.seminhematol.2015.03.002

67. Matre P, Velez J, Jacamo R, et al. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget. 2016;7(48):79722–79735. doi:10.18632/oncotarget.12944

68. Wang ES, Frankfurt O, Orford KW, et al. Phase 1 study of CB-839, a first-in-class, orally administered small molecule inhibitor of glutaminase in patients with relapsed/refractory leukemia. Blood. 2015;126(23):2566.

69. Molenaar RJ, Radivoyevitch T, Nagata Y, et al. IDH1/2 mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitors. Clin Cancer Res. 2018;24(7):1705–1715. doi:10.1158/1078-0432.CCR-17-2796

70. Schumacher T, Bunse L, Pusch S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–327. doi:10.1038/nature13387

71. Pellegatta S, Valletta L, Corbetta C, et al. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun. 2015;3:4. doi:10.1186/s40478-014-0180-0

Source: Blood and Lymphatic Cancer: Targets and Therapy.
Originally published June 27, 2019.

READ FULL ARTICLE Curated publisher From Dovepress