In conclusion, PCs have greater costs than PICC, but have less complication rates, especially for patients with medical insurance. In our institution, 698 PCs were inserted in 777 colorectal cancer patients (89%). PCs increase convenience and lower complication rates suggest that these devices are safe tools for drugs delivery in colorectal cancer patients. This evidence may form a good basis for optimal CPs decisions.


Continue Reading

CVCs, central venous catheters; PICC, peripherally inserted central venous catheter; SVC, superior vena cava; PC, port catheter; CRC, chemotherapy for colorectal cancer; PTT, partial thromboplastin time; UEDVT, upper extremity deep venous thrombosis; INR, international normalized ratio.


The authors thank Ruixu and Juanwu, employees from Center of Oncology, Jiangsu Province Hospital, Nanjing, China.


The authors report no conflicts of interest in this work.

Lijuan Yin, Jinhua Li

Center of Oncology, Jiangsu Province Hospital, Nanjing, People’s Republic of China


1. Lyon SM, Given M, Marshall NL. Interventional radiology in the provision and maintenance of long-term central venous access. J Med Imaging Radiat Oncol. 2008;52(1):10–17. doi:10.1111/j.1440-1673.2007.01904.x

2. Cotogni P, Pittiruti M. Focus on peripherally inserted central catheters in critically ill patients. World J Crit Care Med. 2014;3(4):80–94. doi:10.5492/wjccm.v3.i4.80

3. Mueller JT, Wright AJ, Fedraw LA, et al. Standardizing central line safety: lessons learned for physician leaders. Am J Med Qual. 2013;29:191–199. doi:10.1177/1062860613494752

4. Moureau N, Poole S, Murdock MA, et al. Central venous catheters in home infusion care: outcomes analysis in 50,470 patients. J Vasc Interv Radiol. 2002;13(10):1009–1016. doi:10.1016/S1051-0443(07)61865-X

5. Kurul S, Saip P, Aydin T. Totally implantable venous-access ports: local problems and extravasation injury. Lancet Oncol. 2002;3(11):684–692. doi:10.1016/S1470-2045(02)00905-1

6. Schulmeister L. Management of non-infectious central venous access device complications. Semin Oncol Nurs. 2010;26(2):132–141. doi:10.1016/j.soncn.2010.02.003

7. Jordan K, Behlendorf T, Surov A, et al. Venous access ports: frequency and management of complications in oncology patients. Onkologie. 2008;31(7):404–410. doi:10.1159/000140451

8. Petrioli R, Pascucci A, Francini E, et al. Neurotoxicity of FOLFOX-4 as adjuvant treatment for patients with colon and gastric cancer: a randomized study of two different schedules of oxaliplatin. Cancer Chemother Pharmacol. 2008;61(1):105–111. doi:10.1007/s00280-007-0454-3

9. Tesselaar ME, Ouwerkerk J, Nooy MA, et al. Risk factors for catheter-related thrombosis in cancer patients. Eur J Cancer. 2004;40(15):2253–2259. doi:10.1016/j.ejca.2004.06.023

10. Kim JS, Holtom P, Vigen C. Reduction of catheter-related bloodstream infections through the use of a central venous line bundle: epidemiologic and economic consequences. Am J Infect Control. 2011;39(8):640–646. doi:10.1016/j.ajic.2010.11.005

11. Cotogni P, Barbero C, Garrino C, et al. Peripherally inserted central catheters in non-hospitalized cancer patients: 5-year results of a prospective study. Support Care Cancer. 2015;23(2):403–409. doi:10.1007/s00520-014-2387-9

12. Blot SI, Depuydt P, Annemans L, et al. Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis. 2005;41(11):1591–1598. doi:10.1086/497833

13. Dimick JB, Pelz RK, Consunji R, et al. Increased resource use associated with catheter-related bloodstream infection in the surgical intensive care unit. Arch Surg. 2001;136(2):229–234. doi:10.1001/archsurg.136.2.229

14. Leistner R, Hirsemann E, Bloch A, et al. Costs and prolonged length of stay of central venous catheter-associated bloodstream infections (CVC BSI): a matched prospective cohort study. Infection. 2014;42(1):31–36. doi:10.1007/s15010-013-0494-z

15. Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA. 1994;271(20):1598–1601. doi:10.1001/jama.1994.03510440058033

16. Warren DK, Quadir WW, Hollenbeak CS, et al. Attributable cost of catheter-associated bloodstream infections among intensive care patients in a nonteaching hospital. Crit Care Med. 2006;34(8):2084–2089. doi:10.1097/01.CCM.0000227648.15804.2D

17. Beckers MM, Ruven HJ, Seldenrijk CA, et al. Risk of thrombosis and infections of central venous catheters and totally implanted access ports in patients treated for cancer. Thromb Res. 2010;125(4):318–321. doi:10.1016/j.thromres.2009.06.008

18. Liu Y, Gao Y, Wei L, et al. Peripherally inserted central catheter thrombosis incidence and risk factors in cancer patients: a double-center prospective investigation. Ther Clin Risk Manag. 2015;11:153–160. doi:10.2147/TCRM.S73379

19. Tabatabaie O, Kasumova GG, Eskander MF, et al. Totally implantable venous access devices: a review of complications and management strategies. Am J Clin Oncol. 2017;40(1):94–105. doi:10.1097/COC.0000000000000361

20. Goossens GA, De Waele Y, Jerome M, et al. Diagnostic accuracy of the catheter injection and aspiration (CINAS) classification for assessing the function of totally implantable venous access devices. Support Care Cancer. 2016;24(2):755–761. doi:10.1007/s00520-015-2839-x

21. Ku YH, Kuo PH, Tsai YF, et al. Port-A-Cath implantation using percutaneous puncture without guidance. Ann Surg Oncol. 2009;16(3):729–734. doi:10.1245/s10434-008-0224-4

22. Lin CP, Wang YC, Lin FS, et al. Ultrasound-assisted percutaneous catheterization of the axillary vein for totally implantable venous access device. Eur J Surg Oncol. 2011;37(5):448–451. doi:10.1016/j.ejso.2011.01.026

23. Lee JH, Bahk JH, Ryu HG, et al. Comparison of the bedside central venous catheter placement techniques: landmark vs electrocardiogram guidance. Br J Anaesth. 2009;102(5):662–666. doi:10.1093/bja/aep046

24. LaBella G, Kerlakian G, Muck P, et al. Port-A-Cath placement without the aid of fluoroscopy or localizing devices: a community hospital series. Cancer J. 2005;11(2):157–159. doi:10.1097/00130404-200503000-00012

25. Collier PE, Goodman GB. Cardiac tamponade caused by central venous catheter perforation of the heart: a preventable complication. J Am Coll Surg. 1995;181(5):459–463.

26. Darling JC, Newell SJ, Mohamdee O, Uzun O, Cullinane CJ, Dear PR. Central venous catheter tip in the right atrium: a risk factor for neonatal cardiac tamponade. J Perinatol. 2001;21(7):461–464. doi:10.1038/

27. Eisen LA, Narasimhan M, Berger JS, et al. Mechanical complications of central venous catheters. J Intensive Care Med. 2006;21(1):40–46. doi:10.1177/0885066605280884

28. Ker K, Edwards P, Perel P, et al. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative metaanalysis. BMJ. 2012;344:e3054. doi:10.1136/bmj.e3054

29. Chornenki N, Um KJ, Mendoza PA, et al. Risk of venous and arterial thrombosis in non-surgical patients receiving systemic tranexamic acid: a systematic review and meta-analysis. Thromb Res. 2019;179:81–86. doi:10.1016/j.thromres.2019.05.003

30. Godier A, Roberts I, Hunt BJ. Tranexamic acid: less bleeding and less thrombosis? Crit Care. 2012;16(3):135. doi:10.1186/cc11374

Source: Cancer Management and Research.
Originally published July 14, 2020.

READ FULL ARTICLE Curated publisher From Dovepress