Targeting a unique receptor promising for glioblastoma multiforme

Novel therapeutic strategies for glioblastoma multiforme (GBM) are under investigation. These are in the form of targeted therapies against a unique receptor, the interleukin-13 receptor α chain variant 2 (IL13Rα2).

Glioblastoma multiforme (GBM) is one of the most lethal primary brain tumors, with median survival for these patients only slightly more than 1 year.

Researchers at Boston University School of Medicine (BUSM) in Massachusetts collaborated with researchers from the City of Hope in Duarte, California, to publish a review paper in Neuro-Oncology (2014; doi:10.1093/neuonc/nou045). They discuss various targeted therapies against IL13Rα2 and early successes of clinical trials with these therapies in the treatment of GBM. The paper also highlights the need for future trials to improve efficacy and toxicity profiles of targeted therapies in this field.

Targeted therapies, which are drugs that interfere with specific molecules involved in cancer growth, have been successfully used in the treatment of many cancers, including breast and blood cancers. Successful targets for therapies are specific to tumor cells and not found on normal cells.

Selectively expressed on GBM and absent on surrounding brain tissue, the interleukin-13 receptor α chain variant 2 was identified as a potential target for therapy for GBM two decades ago. IL13Rα2 also plays an important role in the growth of tumors. In normal physiologic conditions, IL-13 binds to the receptor IL13Rα1 and helps regulate immune responses. In cancer cells, IL-13 binds to the receptor IL13Rα2 and, through a series of steps, prevents cancer cells from undergoing normal cell death. Increased expression of IL13Rα2 promotes the progression of GBM.

Since its discovery, IL13Rα2 has provided a target for therapies in GBM. These therapies have ranged from fusion proteins of IL-13 and bacterial toxins, oncolytic viruses, and immunotherapies. A phase I clinical trial and a phase III clinical trial have been completed for a T-cell based immunotherapy and IL-13 bacterial toxin fusion protein respectively, both with promising outcomes.

"The field of targeted therapies in gliomas holds a lot of promise, and IL13Rα2 is in an optimal position to materialize these promises," explained corresponding author Sadhak Sengupta, PhD, assistant professor of neurosurgery at BUSM and principal investigator of the Brain Tumor Lab at Roger Williams Medical Center in Providence, Rhode Island. "While early trials are encouraging, we need further research to achieve better targeting of the receptor and improved safety profiles of the treatments."

Loading links....
You must be a registered member of ONA to post a comment.

Sign Up for Free e-newsletters

Regimen and Drug Listings


Bone Cancer Regimens Drugs
Brain Cancer Regimens Drugs
Breast Cancer Regimens Drugs
Endocrine Cancer Regimens Drugs
Gastrointestinal Cancer Regimens Drugs
Genitourinary Cancer Regimens Drugs
Gynecologic Cancer Regimens Drugs
Head and Neck Cancer Regimens Drugs
Hematologic Cancer Regimens Drugs
Lung Cancer Regimens Drugs
Other Cancers Regimens
Rare Cancers Regimens
Skin Cancer Regimens Drugs