New imaging system may cut radiation exposure for liver cancer patients

Testing of an interventional x-ray guidance device approved by the U.S. Food and Drug Administration in 2013 has the potential to reduce the radiation exposure of patients undergoing intra-arterial therapy (IAT) for liver cancer, reported researchers at the 100th annual meeting of the Radiological Society of North America in Chicago, Illinois.

The researchers described the results of a clinical trial of the imaging system AlluraClarity, made by Philips Healthcare, on 50 patients with liver cancer. Its use reduced radiation exposure up to 80%, compared with exposure from a standard imaging x-ray platform used in IAT, while producing images just as clear as the standard system, said Jean-Francois Geschwind, MD, a professor in the Russell H. Morgan Department of Radiology and Radiological Science in the Johns Hopkins University School of Medicine and its Kimmel Cancer Center in Baltimore, Maryland.

Geschwind said if further studies continue to affirm his team's findings, the platform may be especially useful for patients who need repeat therapy; children, who are especially vulnerable to radiation; and physicians who routinely use procedures such as IAT and are exposed to radiation.

During IAT, a physician inserts a thin, flexible tube directly into a blood vessel feeding a tumor, using that pathway to deliver chemotherapy or other drugs. Radiographic imaging is used during the procedure to visualize the patient's blood vessels and to guide both the catheter's placement and drug delivery.

Geschwind and his colleagues compared the radiation exposure of 25 patients with liver cancer treated with IAT using the AlluraClarity platform with the exposure of 25 additional patients with liver cancer treated with IAT using Philips' previous x-ray imaging platform, Allura.

Lowering the radiation power on standard x-ray imaging platforms can reduce the exposure, but without special image processing, the amount of image noise increases and physicians are unable to see small structures needed for good treatment, says Ruediger Schernthaner, MD, a postdoctoral research fellow in vascular and interventional radiology at The Johns Hopkins Hospital. "You can compare this to an image taken with your cell phone in the evening without a flash," he said.

The AlluraClarity platform uses a series of real-time image processing algorithms to achieve high quality images at a lower radiation power, Schernthaner said.

Loading links....
You must be a registered member of ONA to post a comment.

Sign Up for Free e-newsletters

Regimen and Drug Listings

GET FULL LISTINGS OF TREATMENT Regimens and Drug INFORMATION

Bone Cancer Regimens Drugs
Brain Cancer Regimens Drugs
Breast Cancer Regimens Drugs
Endocrine Cancer Regimens Drugs
Gastrointestinal Cancer Regimens Drugs
Genitourinary Cancer Regimens Drugs
Gynecologic Cancer Regimens Drugs
Head and Neck Cancer Regimens Drugs
Hematologic Cancer Regimens Drugs
Lung Cancer Regimens Drugs
Other Cancers Regimens
Rare Cancers Regimens
Skin Cancer Regimens Drugs