Glioblastoma cell migration reveals a potential drug delivery route through the blood-brain barrier

Invading glioblastoma cells may hijack cerebral blood vessels during early stages of disease progression and damage the brain's protective barrier, according to results of a study in mice. This finding could ultimately lead to new ways to bring about the death of the tumor, as therapies may be able to reach these deadly cells at an earlier time point than was previously thought possible.

This research, published in Nature Communications (2014; doi:10.1038/ncomms5196), was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

Glioblastoma, a type of aggressive brain tumor, is one of the most devastating forms of cancer. These tumors spread quickly and are difficult to treat because the brain protects itself from foreign substances.

The blood-brain barrier (BBB) is designed to stand in the way of harmful materials leaking into the brain and to regulate the transport of important molecules between the brain and the blood. One component of the BBB is close-fitting connections (called tight junctions) that form seals between the blood vessel's endothelial cells. Several other types of cells that cover the blood vessel, including specialized brain cells known as astrocytes, which have extensive projections called endfeet, that cover 90% of the blood vessel surface.

The astrocytic endfeet regulate the tight junctions between the endothelial cells. They also release specific chemicals that cause blood vessels to expand or contract, thereby regulating blood flow in the brain.

Harald Sontheimer, PhD, from the University of Alabama at Birmingham, and his colleagues investigated the interactions between glioblastoma cells, astrocytes, and cerebral blood vessels through the use of mouse models of glioblastoma, fluorescent dyes, and various imaging techniques.

The research team showed that almost all of the glioblastoma cells outside the main tumor mass were located in the space between the astrocytic endfeet and the blood vessel outer surface. By using the meshwork of small blood vessels as a scaffold, glioblastoma cells were able to migrate along the vessels and extract nutrients from the blood for themselves.

"The vast majority of tumor cells are associated with blood vessels. These cells appear to be using the vessels as highways to travel great distances within the brain," said Sontheimer.

In addition, the findings revealed the glioblastoma cells hijacked control over the blood flow by taking it away from the astrocytes. As a result, tight junctions became loose, which led to a breakdown in the BBB. The scientists were surprised that very small groups of tumor cells, even individual cells, were sufficient to weaken the BBB early in the disease process.

"Evidence from our models suggests that early in the disease, invading tumor cells are not completely protected by the blood-brain barrier and may be more vulnerable to drugs delivered to the brain via the blood. If these findings hold true in humans, treatment with anti-invasive agents might be beneficial in newly diagnosed glioblastoma patients," said Sontheimer. Localized breaches in the BBB may allow regionally precise delivery of drugs to attack tumor cells even in the earliest stage.

Loading links....
You must be a registered member of ONA to post a comment.

Sign Up for Free e-newsletters

Regimen and Drug Listings


Bone Cancer Regimens Drugs
Brain Cancer Regimens Drugs
Breast Cancer Regimens Drugs
Endocrine Cancer Regimens Drugs
Gastrointestinal Cancer Regimens Drugs
Genitourinary Cancer Regimens Drugs
Gynecologic Cancer Regimens Drugs
Head and Neck Cancer Regimens Drugs
Hematologic Cancer Regimens Drugs
Lung Cancer Regimens Drugs
Other Cancers Regimens
Rare Cancers Regimens
Skin Cancer Regimens Drugs